Bölünebilme Konu Anlatımı

zumre-yillik-planTanım: A, B, C, K birer doğal sayı ve B > 0 olmak üzere, 

bolunebilmeA’ya bölünen, B’ye bölen, C’ye bölüm, K’ya kalan denir.
A = B × C + K dir.

 

 

  • Kalan, bölenden küçüktür. (K < B)
  • Kalan, bölümden (C den) küçük ise, bölen (B) ile bölümün (C) yeri değiştirilebilir. Bu durumda A ve K değişmez.
  • K = 0 ise, A sayısı B ile tam bölünebilir.

 

Bölünebilme Kuralları

1) 2 ile Bölünebilme
Birler basamağındaki rakamı çift olan sayılar 2 ile tam bölünür.
Tek sayıların 2 ile bölümünden kalan 1 dir.

 

2) 3 ile Bölünebilme
Rakamlarının sayısal değerleri toplamı 3 ün katı olan sayılar 3 ile tam bölünür.
Bir sayının 3 ile bölümünden kalan, rakamlarının toplamının 3 ile bölümünden kalana eşittir.

 

3) 4 ile Bölünebilme
Bir sayının onlar basamağındaki rakam ile birler basamağındaki rakamın (son iki basamak) belirttiği sayı, 4 ün katı olan sayılar 4 ile tam bölünür.
… abc sayısının 4 ile bölümünden kalan bc nin (son iki basamak) 4 ile bölümünden kalana eşittir.
… abc sayısının 4 ile bölümünden kalan
c + 2 . b nin 4 ile bölümünden kalana eşittir.

 

4) 5 ile Bölünebilme
Birler basamağındaki rakam 0 veya 5 olan sayılar 5 ile tam bölünür.
Bir sayının 5 ile bölümünden kalan, o sayının birler basamağındaki rakamın 5 ile bölümünden kalana eşittir.

 

5) 7 ile Bölünebilme
(n + 1) basamaklı anan-1 … a4a3a2a1a0 sayısının 7 ile tam bölünebilmesi için,

kz olmak üzere,

(a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) +…– … = 7k

olmalıdır.

Birler basamağı a0, onlar basamağı a1, yüzler basamağı a2, … olan sayının (…aaaaaa0 sayısının) 7 ile bölümünden kalan

 

(a0 + 3a1 + 2a2) – (a3 + 3a4 + 2a5) +…– … …

işleminin sonucunun 7 ile bölümünden kalana eşittir.

Sekiz basamaklı ABCDEFGH sayısının 7 ile bölümünden kalan,

 

(H + 3 × G + 2 × F) – (E + 3 × D + 2 × C) + (B + 3 × A) işleminin sonucunun 7 ile bölümünden kalandır.

 

6) 8 ile Bölünebilme
Yüzler basamağındaki, onlar basamağındaki ve birler basamağındaki rakamların (son üç rakamın) belirttiği sayı 8 in katı olan sayılar 8 ile tam bölünür.
3000, 3432, 65104 sayıları 8 ile tam bölünür.

Birler basamağı c, onlar basamağı b, yüzler basamağı a, … olan sayının (… abc sayısının) 8 ile bölümünden kalan c + 2 × b + 4 × a toplamının 8 ile bölümünden kalana eşittir.

 

7) 9 ile Bölünebilme
Rakamlarının toplamı 9 un katı olan sayılar 9 ile tam bölünür.

Bir sayının 9 ile bölümünden kalan, o sayının rakamlarının toplamının 9 ile bölümünden kalana eşittir.

 

8) 10 ile Bölünebilme

Birler basamağındaki rakamı 0 (sıfır) olan sayılar 10 ile tam bölünebilir. Bir sayının birler basamağındaki rakam o sayının 10 ile bölümünden kalandır.

9) 11 ile Bölünebilme

(n + 1) basamaklı anan–1 … a4a3a2a1a0 sayısının 11 ile tam bölünebilmesi için

(a0 + a2 + a4 + …) – (a1 + a3 + a5 + …)… = 11 . k

ve kz olmalıdır.

(n + 1) basamaklı anan–1 … a4a3a2a1a0 sayısının 11 ile bölümünden kalan

(a0 + a2 + a4 + …) – (a1 + a3 + a5 + …)… işleminin sonucunun 11 ile bölümünden kalana eşittir.

Aralarında asal iki sayıya bölünebilen bir sayı, bu iki sayının çarpımına da tam bölünür.

  • 2 ve 3 ile tam bölünen sayılar 2 × 3 = 6 ile de tam bölünür.
  • 3 ve 4 ile tam bölünen sayılar 3 × 4 = 12 ile de tam bölünür.
  • 4 ve 6 ile tam bölünen sayılar 4 × 6 = 24 ile tam bölünemeyebilir. Çünkü 4 ile 6 aralarında asal değildir.

 

Kalan ile Bölen İlişkisi

A, B, C, D, E, K1, K2 uygun koşullarda birer doğal sayı olmak üzere,

A nın C ile bölümünden kalan K1 ve

B nin C ile bölümünden kalan K2 olsun.

Buna göre,

  • × B nin C ile bölümünden kalan K1 × K2 dir.
  • A + B nin C ile bölümünden kalan K1 + K2 dir.
  • A – B nin C ile bölümünden kalan K1 – K2 dir.
  • × A nın C ile bölümünden kalan D × K1 dir.
  • AE nin C ile bölümünden kalan (K1)E dir.

Yukarıdaki işlemlerde kalan değerler bölenden (C den) büyük ise, tekrar C ile bölünerek kalan bulunur.

Çarpanlar ile Bölüm

Bir A doğal sayısı B × C ile tam bölünüyorsa A sayısı B ve C doğal sayılarıyla da bölünebilir.Fakat bu ifadenin karşıtı (A sayısı B ile ve C ile tam bölünüyorsa A sayısı B × C ile tam bölünür.) doğru olmayabilir.

  • 144 sayısı 2 × 6 = 12 ile tam bölünür ve 144 sayısı 2 ile ve 6 ile de tam bölünür.
  • 6 sayısı 2 ile ve 6 ile tam bölünür. Fakat 6 sayısı 2 × 6 = 12 ile tam bölünemez.

Bir Tam Sayının Tam Bölenleri

Bir tam sayının, asal çarpanlarının kuvvetlerinin çarpımı biçiminde yazılmasına bu sayının asal çarpanlarının kuvvetleri biçiminde yazılması denir.

a, b, c birbirinden farklı asal sayılar ve m, n, k pozitif tam sayılar olmak üzere,

A = am . bn . ck olsun.

Bu durumda aşağıdakileri söyleyebiliriz:

  • A yı tam bölen asal sayılar a, b, c dir.
  • A sayısının pozitif tam bölenlerinin sayısı,

(m + 1) × (n + 1) × (k + 1) dir.

  • A sayısının pozitif tam bölenlerinin ters işaretlileri de negatif tam bölenidir.
  • A sayısının tam sayı bölenleri sayısı,2 × (m + 1) × (n + 1) × (k + 1) dir.
  • A sayısının tam sayı bölenleri toplamı 0 (sıfır) dır.
  • A sayısının pozitif tam bölenlerinin toplamı,
    bolunebilme1
  • A sayısının asal olmayan tam sayı bölenlerinin sayısı, A nın tam sayı bölenlerinin sayısından A nın asal bölenlerinin sayısı çıkarılarak bulunur.
  • A nın asal olmayan tam sayı bölenleri toplamı,
    – (a + b + c) dir.
  • A sayısından küçük A ile aralarında asal olan doğal sayıların sayısı,bolunebilme2
  • A sayısının pozitif tam sayı bölenlerinin çarpımı; bolunebilme3

 

 

giris

★★★★ Kimya Konu Anlatımları ★★★★

[Toplam:3    Ortalama:3.7/5]

Bir Cevap Yazın

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir